
Multi-Agent Pathfinding System Implemented on XNA

Huang Jin
School of Software Engineering

Beijing Jiaotong University
Beijing, China

E-mail: hj34130226@126.com

Wu Wei
School of Software Engineering

Beijing Jiaotong University
Beijing, China

E-mail: wstorm910@163.com

Ling Ziyan
School of Geography

Beijing Normal University
Beijing, China

E-mail: ziyan_ling@126.com

Abstract—This research presents a real-time multi-agent
pathfinding system for XNA game development. In our system,
each agent thinks independently, and continues to search and
move to reach its destination, so a group behaviors with
significant individual characteristic can be better simulated;
The concept of soft obstacle is introduced to implement
collision avoidance between agents and crowd movement
simulation; The pathfinding algorithm is applied and bridged
on the 3D games, which provides efficient multi NPC
pathfinding function for real-time game. The paper expounds
the system from overall structure, components detail, core
algorithms and practical application, and then obtains the
experimental results.

Keywords: multi-agent; pathfinding; game development;
XNA

I. INTRODUCTION

Pathfinding, the problem of planning an optimal path for
an agent reaching a destination without collision, is a
classical problem in game development. In a static grid map,
the problem can be solved by A* algorithm efficiently.
However, collision avoidance between agents or agent and
other dynamic obstacle must be considered, the ability of
realizing the potential obstacle must be endowed to agent by
improving A* algorithm. With the help of thinking
independently, each agent in the multi-agent pathfinding
system can accomplish the work of navigating form starting
position to the goal by itself. This system also solves many
problems in real-life applications, including motion planning
in robotics, air traffic control, vehicle routing, disaster rescue
and computer games [1].

XNA is a new game development framework based on
DirectX released by Microsoft, which provides development
environment for both PC and Xbox 360. This IDE
(Integrated Development Environment) provides game
developers with many useful tools, such as resources
manager, math libraries, input, sound player, video player,
internet support and so on. In addition, it offers a simple and
convenient base game class that included initialization,
resources import and release, update, drawing and other
important method. The multi-agent pathfinding system will
be applied to an existed game exploited on XNA. The
discussion will focus on pathfinding algorithm and
implementations of the system without involving much detail
of game design.

II. RELATED WORK

A* algorithm, first proposed by Peter Hart et al. [2], is
applied to find the optimal path from a starting position to a
destination in static grid map. It was formed based on
Dijkstra algorithm [3] that expands all nodes surrounding the
starting point until it reaches a goal, however A* expands
nodes in a more directed manner using a heuristic by
estimating distance between the goal and the current node.

The drawback of A* algorithm, as discussed earlier, is
that it can only be applied on path planning for a single target
in static grid map, but not a dynamic one. To solve this
problem, Silver [4] proposed an improved algorithm that
widely used in video game, Local Repair A* (LRA*). In
LRA*, paths are computed individually for each agent, if an
agent discovers the next step will result in a conflict, it will
re-plan the path to prevent the collision. However, LRA* not
only often results in cyclic dependences, but also brings
about the deadlock phenomenon that agents will never reach
their destinations.

Jeremy et al. [5] and Jansen et al. [6] tried to estimate a
direction for every grid cell that an agent may occupy, and
encourage or require any agent to move in that general
direction. In these algorithm, the results computed by A* or
Dijkstra is translated into a direction vector for each point.
These methods highly limit the paths that agents can follow,
and simulate group behavior efficiently. However, this kind
of algorithm cannot fulfill the requirement of game because
of his weakness on expression of individual characteristic.

III. OVERALL STRUCTURE

The paper will present a multi-agent pathfinding system
that can be practically employed in XNA game development
by utilizing and summarizing the existing research results.
The critical components of this system are given below
(Figure 1).

• Grid Map. The grid map is used to mark static
obstacles in the scene. Generally, the map is a matrix
composed of 0 and 1, as 0 signs the position of
barrier and 1 signs the passable area.

• Pathfinding Unit. The core component of the
system, as it provides importance functions such as
reading grid map information from text, pathfinding
grid initialization, updating pathfinding gird and
pathfinding method that will be invoked by any
agent.

2012 Fourth International Conference on Computational Intelligence and Communication Networks

978-0-7695-4850-0/12 $26.00 © 2012 IEEE

DOI 10.1109/CICN.2012.150

651

Figure 1. The Overall Structure of the system

• Movement Unit. The translate functions of agent in
3D world, such as moving and rotating, is
implemented in this unit.

• Agent. The basic unit to execute pathfinding and
movement behaviors in the system.

• Agent Manager. The tool for agent management,
including registration, removal and deciding the
timing and frequency that agent executes pathfinding
method.

IV. COMPONENTS DETAIL

A. Pathfinding Unit

The pathfinding unit provides the whole system with core
algorithm, which will help agents to get the optimal path.
While the grid isn’t static, but dynamic updates along with
the changing position of obstacles or game elements, we re-
initialize the pathfinding grid each time an agent invokes the
pathfinding function of the unit. In A* algorithm, H
represents the distant between the current node and terminal
node, and G represents the cost from initial node to current
node, but in our initialization of pathfinding grid, we keep H
but adjust G by introducing the concept of soft obstacle,
which is more correspond to the game. In addition, an
eliminating list is added to the algorithm, which can mark the
dynamic obstacle in pathfinding grid, so agents can’t pass
through them. In one word, we will search the optimal path
dynamically in a grid map that composes of static obstacle,
dynamic obstacle and soft obstacle.

1) Pathfinding Grid Initialization
Pathfinding grid is a two-dimensional array of grid cell,

and important parameters in a grid cell involve F, G, H,
Distance Cost and Density Cost.

Distance Cost stores the consumption of movement cost
when passing the cell while Density Cost stores the
consumption caused by soft obstacle. In the game, people
should keep distant when the space is abundant, and
avoiding a jam when the space is crowed, so the concept of
soft obstacle is introduced. As is showed in Figure 2, the
black box on the left is a hard obstacle that agents can’t pass,
and the gray circle on the right is a soft obstacle that the
algorithm neither encourages nor prohibits agents pass
through. Moreover, agent will receive bigger resistance as
closer as it moves to the center. NPC (Non-Player-Controlled
Character) and the player will be represented by the soft
obstacle, and the crowd density can be controlled by

modifying the radius of the soft obstacle. That is reason why
we named it Density Cost.

Figure 2. Hard Obstacle and Soft Obstacle

The formulate of Density Cost is

1

0

()
(1)

0 ()

in
i

dens i i
i

i

r d
d r

C C where C r
d r

−

=

−�
<�

= = �
� >=�

�

iC means the density cost from soft obstacle i , r means

radius of soft obstacle, id means distant between the cell and

center of soft obstacle i .
The formulate of G is

() () () (2)G x aT x bD x= +

T means the sum of consumption from inherent distant,
D means the sum of consumption from soft obstacle, a , b
are weight of T and D respectively.

The pseudo-code of initialization of pathfinding grid is
given below.

Create a New Empty Grid
Read Static Obstacle Information from Text

for all Grid Cell in Grid call “C” do
 Compare C’s Coordinate with Static Obstacle Information

if C should be Static Obstacle then
 Make C’s Type Obstacle
else
 Make C’s Type Normal
end if
for all Agent in Agents of the Scene call “A” do

Calculate the Density Cost by A
Add Density Cost by A to C’s Density Cost
Calculate the Density Cost by A’s Target
Add Density Cost by A’s Target to C’s Density Cost

end for
end for

for all Agent in Agents of the Scene call “A” do

Make the Type of Grid Cell that in A’s Position Exclusion
Make the Type of Grid Cell that in Position of A’s Target

652

Exclusion
end for

Firstly, an empty pathfinding grid is founded by the
algorithm, and then it reads the static obstacle information
from disk. Secondly, the type of grid cell is allocated
according to the static obstacle information. Thirdly, the grid
cells where agents stand on are all set to be soft obstacles as
well as grid cells that agents will move into in the next one
step. In this way, we can reduce the risk of traversing (Figure
3) and deadlock (Figure 4).

Figure 3. The illegal traversing happens in these two situations

Figure 4. In some kind of situations, agent’s path re-planning may results

in deadlock

2) Optimal Path Searching
As soon as the initialization section is finished, we start

searching the optimal path base on the latest initialized grid.
The first step of the search is to add the start node to the

closed list and expand each of its neighboring cells. These
cells are then added to the open list ordered by their F values.
The search continues then by selecting the next node from
the open list with the lowest F value. The node is removed
from the open list and compared to the end node. If it is not
the end node then it is added to the closed list. We then take
each of its neighbours and insert them into their
corresponding position in the heap. This process continues
until we either reach the finishing point, or there are no
nodes remaining on the open list. If we reach the finishing
point then we have computed the optimal path to the end
node from the start node and we can return the completed
path. If our open list has become empty then there is no path
from the start node to the end node.

The pseudo-code of optimal path searching is given
below.

Create Start Node with Current Position
Add Start Node to Open List
while Open List NOT Empty do

Update Nodes in Open List

Sort Open List by F Value in Descending
Get First Node from Open List call Node “N”
Remove N from Open List
if N is Goal then

Found and Exit Loop
else

Add N to Closed List
end if
for all N’s neighbours call “S” do

if S is NOT in the Closed List and
S is NOT a Static Obstacle and
S is NOT in the Eliminating List and
There is NO Static Barrier Corner between N and S

then
if S has a Copy in the Open List call “S1” then

Renew the min G value of S1 with min {S’G, S1’G}
else

Add S to Open List
end if

end if
end for

end while

Each node is updated firstly by the loop, and the F value
of parent is inherited in this way. There are two additional
conditions are judged as well as neglect nodes in the close
list and nodes marked with obstacle, to decide whether a
neighbor should be added to the open list. The first one is
neglecting nodes in the eliminating list, which is a dynamic
list that is setup in pathfinding grid initialization for marking
all dynamic obstacles in the scene. And the second one is
used to prevent the path from crossing corner of barriers. To
achieve this, type of nodes signed with red dots in Figure 5
are checked and return true or false depending on situations.

Figure 5. Agent may pass through corner of barrier without judging type

of neighbours.

B. Movement Unit
As the application involved in this paper is a 3D game,

after we finished the path searching in the 2D grid map, the
agent must be ordered to excuse the movement like moving
and rotating in 3D space. A movement function is provided
to each agent for translation of position and direction.
Moving and rotating will be performed as long as an agent
calls this function at its update method.

The pseudo-code of movement function is given below.

Calculate the Direction from Agent to the Goal Call “Dire”
Calculate the Dot Product of Dire and Agent’s Face
Direction Call “Dot”
if Dot is NOT larger than the Angle Threshold than

if is Clockwise than

653

Rotate Agent Clockwise
else

Rotate Agent Counterclockwise
end if

end if

Calculate the Distance between Agent and the Goal Call
“Dist”
if Dist is NOT larger than the Distance Threshold than

Move Agent to Dire
else

Set Path Target to Null
end if

Firstly, the direction of agent’s destination is calculated,

and then the included angle between agent’s orientations and
destination is got. If the included angle is larger than the
angle threshold, agent twirls otherwise moves directly. We
should get the right twirling direction by comparing the polar
angles of the two direction vectors, and then order the agent
move or not by computing the distant between agent and
destination. This function will be called before the next
frame is rendered.

C. Agent and Agent Manager
Agent is composed by two parts: pathfinding component

and 3D component. Pathfinding component stores the
position of agent and the latest path that successfully
searches by pathfinding unit. 3D component not only stores
position, direction and destination of agent, but also
responsible for calling movement function at an appropriate
time, making the agent move actually.

There are two maps, one is grip map for path finding, and
another is real map in 3D world. The grip map is discrete
while the real map is continuous, so pathfinding component
and 3D component are necessary to store their information
respectively. If necessary, we may need to convert them to
each other.

Agent Manager is responsible for the traversal of all
agents in its update function, and judging agents have
finished the movement or not, if the answer is yes, then
searching the optical path again, otherwise no action.
Different from LPA* algorithm, we recomputed the path
after the agent finished one step, instead of waits until
meeting an obstacle, because it is the only way that agent can
perceive the soft obstacle in the scene. If we don’t execute
like that, an agent will find a path in the first searching,
suppose that the soft obstacles become concentrated around
its path, but the path is not through the center of any soft
obstacle, so even the density cost is high, the agent will still
move along the first path, but this result is not what we want.

The pseudo-code of update function of agent manager is
given below.

for all Agent in Agents of the Scene call “A” do

if A’s Path Movement Finished then
Update Pathfinding Unit
Find new Path for A
Set the First Cell of the new Path A’s next Path Target

end if
end for

V. RESULTS

This multi-agent pathfinding system could simulate
small-scale crowd (around 20 to 40 agents) finding path in a
middle-size grid map (from 40*40 to 60*60). The testing
routine is operated in a computer with 3.00GHz Inter Core2
Duo processor and ATI Radeon 4850 graphics card, and 45
frame rates per second is got, it will fall to 3-6 FPS when the
number of agent is up to 100. Since the algorithm has not
implemented in GPU, and the operating efficiency suffers
obvious restrict, so in our future study, we could try to focus
on transplanting the algorithm to GPU, increasing the
operating efficiency that large-scale crowd could find path in
a large-size grid map.

Figure 6. Pathfinding test for 20 agents

654

There are 20 agents finding path in Figure 6. 10 females
and 10 males are separated in different corners on the map
initially, and their destinations are others’ initial positions.
By this pathfinding system, they bypass the wall and other
NPCs, and arrive at destinations successfully.

Figure 7 shows the result of this system applying in 3D
game. Every NPC has their own destination in the game,
they may move to any one of the rooms, talk to the player or
even stop for a while, so the NPCs’ behavior in the game has
little group characteristic but more individual characteristic,
and our pathfinding system could simulate this well.

REFERENCES
[1] Ko-Hsin Cindy Wang and Adi Botea. Fast and Memory-Efficient

Multi-Agent Pathfinding. Proceedings of the Eighteenth
International Conference on Automated Planning and Scheduling,

380-387, 2008.

[2] Peter Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for
the Heuristic Determination of Minimum Cost Paths. IEEE
Transactions on Systems Science and Cybernetics, 4(2):100-107,
1968.

[3] Ian Millington. Articial Intelligence for Games (The Morgan
Kaufmann Series in Interactive 3D Technology). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2006.

[4] Silver, D. Cooperative pathfinding. In Young, R. M.,and Laird, J. E.,
eds., AIIDE, 117–122. 2005. AAAI Press.

[5] Jeremy, Joshua, Christopher, Natalya, Shopf and Barczak et al.
March of the Froblins: Simulation and Rendering Massive Crowds
of Intelligent and Detailed Creatures on GPU. Advances in Real-
Time Rendering in 3D Gpaphics and Games Course – SIGGRAPH,
52-101, 2008.

[6] Jansen, R. and Sturtevant, N. A new Approach to Cooperative
Pathfinding. In AAMAS ’08: Proceedings of the 7th International
Joint Conference on Autonomous Agents and Multiagent Systems,
1401–1404, 2008.

Figure 7. Applying the system on a 3D game

655

